• HOME
  • INDUSTRIES
    • Consulting
    • Finance
    • Healthcare
    • Industrials / Tech
    • Others
  • GOVT
  • PARTNERS
  • CAREERS
  • BLOG
  • SETUP A CALL
Coseer Coseer Coseer Coseer
  • HOME
  • INDUSTRIES
    • Consulting
    • Finance
    • Healthcare
    • Industrials / Tech
    • Others
  • GOVT
  • PARTNERS
  • CAREERS
  • BLOG
  • SETUP A CALL
  • Latest
  • Featured
  • Use Cases
  • Insights
  • Technology
  • Events and Mentions
  • coseer-secure-ai

    No, Secure and Transparent AI is not an Oxymoron

  • Help Coseer Change the World

    Help Us Change The World

  • Fourth Industrial Revolution - Coseer

    The Fourth Industrial Revolution – What Does It Really Mean?

  • coseer-principles of knowledge management

    Principles of Next Generation Knowledge Management

  • Why Must You Use Cognitive Computing for GDPR?

    Why Must You Use Cognitive Computing for GDPR?

  • Latest
  • Featured
  • Use Cases
  • Insights
  • Technology
  • Events and Mentions

Blog> Insights

10 Key Requirements for an Effective Enterprise Search Solution

10 Key Requirements for an Effective Enterprise Search Solution

Download PDF

Enterprise search becomes more complex all the time.

Each company has different data and different requirements for storage, retrieval, and editing. The challenge is finding answers within a jumbled mess of structured and unstructured data. Many existing solutions still rely on keyword search or tagging, which are clunky at best and completely disheartening at worst.

There are many solutions out there geared towards solving the ever-growing enterprise search problem, but in the day-to-day churn of putting out urgent fires, it can be easy to put off. We’ve spent years working with clients to revamp their enterprise search solutions for faster, easier, and better search for everyone involved, and we’ve found that a few key elements can make all the difference in choosing the right solution.

Here are the 10 key requirements an organization must look for in an enterprise search solution:

1. AI Powered Enterprise Search

Among the many buzzwords being thrown around these days Artificial Intelligence, or AI, ranks high among them.

However, beyond the hype, AI has the power to change nearly every aspect of our lives – and our work.

One such area is enterprise search, where it is already becoming a fundamental requirement for any useful enterprise search solution. The reason AI is so necessary for enterprise search lies in the fact that data is disparate, structured differently, and is often in varying formats.

Big data is, well, big.

As such, we need an intelligent technology to parse through it and find the right content within a reasonable amount of time.

2. Queries Both Structured and Unstructured Data

One of the biggest drivers in the explosion of big data over the last few years is its incorporation of unstructured data. It’s important to highlight the major and fundamental differences between structured and unstructured data:

  • Structured data is generally created by computers and its formatting is consistent. It is organized, and often stored in tables.
  • Unstructured data, however, is usually created by humans. It is often inconsistent and relies on “imperfect” human traits including emotion, carelessness, opinions, anger, stress etc… Examples include emails, memos, and academic papers.

Most organizations need to reference both structured and unstructured data, which is why an enterprise search solution that doesn’t recognize unstructured data should be avoided.

3. Understands Natural Language

While traditional AI is generally geared towards structured data, in order to get the best results when parsing unstructured data an organization will need an enterprise search solution that marries AI with Natural Language Processing.

Natural Language Processing, when applied to enterprise search, enables an organization to use search queries that are natural in form and get actionable search responses.

Natural Language powered enterprise search does not rely on keywords, semantics, or structures. Rather, it looks at the underlying knowledge rather than just documents.

4. Moderate Cost 

For any director of VP that reports to a P&L head, cost will always be a factor. However, when deciding on an enterprise search solution, it can’t be the only factor.

In order to find a solution for enterprise search that has all the necessary requirements, you will want to stay away from the low cost solutions, as they generally lack the robust toolset needed.

For example, they are often keyword based.

But that does not mean the most expensive option is always the best. In the case of enterprise search solutions, the “Goldilocks Principle” wins the day.

5. Minimal Human Effort

While AI and cognitive computers are hugely hyped, their adoption within organizations is still minimal. The reason for this is they often require significant man-power to set up.

Pre-tagging data, in particular, can be incredibly time consuming and can drain much needed resources from other critical areas of the organization.

An enterprise search solution needs to be designed to understand natural language and parse unstructured data. Without it, the human effort and man-power costs will be prohibitively high.

6. Minimal Deployment Time

Some enterprise search solutions can take up to 36 months to deploy. For most decision makers, that type of time commitment is a hard pill to swallow.

However, any solution that claims to be entirely “plug and play” likely does not have the type of functionality needed.

The “sweet spot” for full deployment of an enterprise search solution should be somewhere between 4-12 weeks, and the solution delivered should have the flexibility to provide real answers and insight to queries, not just point at documents that may or may not be relevant.

7. Applicable to all Workflows

No two organizations are the same. As such, organizations tend to have disparate workflows.

When researching the right enterprise search solution for your business, it’s important to get clarification that the solution can be overlaid to meet the needs of your unique workflow. If it cannot easily do this, the deployment time, human effort, cost and accuracy will suffer.

 8. High Level of Accuracy

Organizations demand accuracy, and those demands are no less applicable when it comes to enterprise search.

Unlike in the consumer world, businesses need a high level of accuracy. As such, an enterprise search solution must provide somewhere between 95-98% accuracy. Anything below that will, over time, create bottlenecks and frustrations throughout the company. In the end, the organization will be back out looking for a new enterprise search solution to solve these issues.

9. Continuously Learning

Humans are constantly changing. As such, an enterprise search solution based on AI and natural language processing also needs to learn. Any enterprise search solution that your organization considers should get better over time – its algorithm should be learning constantly.

10. Security

Data security is of tantamount importance, period.

When looking into any potential solution, including enterprise search, you must make sure it meets the security standards of your organization.

For enterprise search solutions, the key aspects to look for when assessing security are:

  • Able to be hosted on a VPC or private server
  • Not commingled with other data
  • Once it is live, no one else (including the software provider) outside your organization has access

Looking for an enterprise search solution that meets all these criteria?

Coseer’s Point-and-shoot AI makes enterprise search easy, accurate, and accessible. No more tagging, no more annotating – just point at the data you’re interested and shoot. Based on NLS, and built with continuously self-learning algorithms, Coseer delivers 95-98% accuracy in just 4-12 weeks and improves with each use – recursively improving search and boosting productivity for your team.

You can request a demo of Coseer’s point-and-shoot AI for enterprise search here.

  • Why Natural Language Search Beats Google’s Keyword Appliance? - Coseer

    Why Natural Language Search Beats Google’s Keyword Appliance?

  • How to Hire Data Scientists

  • Resetting-Chatbot-Coseer

    The Time to Reinvent Chatbots

  • Why You Should Digitalize Customer Care

    Digitalized Customer Service: The Right Way

  • Brain Computer Interface and the First Steps to a Machine Brain - Coseer

    First Steps to a Machine Brain

Follow us

  • Home
  • Careers
  • Blog
  • Setup A Demo
  • Terms Of Use
  • Privacy Policy
  • Consulting
  • Finance
  • Healthcare
  • Industrials/ Tech
  • Retail/ Ecommerce
  • Others

Follow Us

© 2021 · All Rights Reserved, Arbot Solutions Inc.

  • Home
  • Careers
  • Blog
  • Setup A Demo
  • Terms Of Use
  • Privacy Policy
Prev Next